Print  |  Send  |   

Magnetic topological insulators could yield dissipationless electronics

August 20, 2012 // Julien Happich

Magnetic topological insulators could yield dissipationless electronics

A team of researchers at RIKEN and the University of Tokyo has demonstrated a new material that promises to eliminate loss in electrical power transmission, through topologically non-trivial properties.


Page 1 of 2

The researchers tried to solve this classic energy problem based upon the first implementation of a highly exotic type of magnetic semiconductor first theorized less than a decade ago - a magnetic topological insulator.

Development of energy saving technologies is one of the central pursuits of modern science. One focus in recent years has been eliminating energy loss in the transmission of power itself, which by some estimates consumes more than 10% of all energy being produced. The new magnetic topological insulator was demonstrated to eliminate this loss.

At left, the active area of magnetic topological insulator (dark gray) is 3 microns across and only 70 atoms thick. The blue background is an insulating gate dielectric and the yellow regions are metallic electrodes. At right, the internal magnet favors the "off" state of the transistor on the left. This is evidence for a new type of magnetic semiconductor. Credit: RIKEN

The work by the RIKEN/UT collaboration is closely related at a landmark discovery from the 1980s, the so-called quantum Hall effect. That effect is known to produce dissipationless electricity channels, but it requires large, cumbersome magnets to produce fields 100,000 larger than the earth's magnetic field for its operation. The RIKEN/UT collaboration circumvented this difficulty by using an exotic type of semiconductor predicted to exhibit a similar effect. In contrast to the quantum Hall effect, this effect, known as the quantum anomalous Hall effect, stems from the semiconductor's own magnetization rather than from an external one. At the heart of this new phenomenon is the interaction between magnetic ions and the topological insulator's current carrying particles (known as Dirac fermions), the latter of which are unique because they behave as if they have zero mass.
1 | 2 | Next page

All news

Power components,Production

Follow us

Fast, Accurate & Relevant for Design Engineers only!

Technical papers     

Filter Wizard     

Check out the Filter Wizard Series of articles by Filter Guru Kendall Castor-Perry which provide invaluable practical Analog Design guidelines.

Linear video channel

READER OFFER

Read more

This month, Arrow Electronics is giving away ten XMC1200 lighting application kits, worth 100 Euros each, for EETimes Europe's readers to win.

Each kit combines Infineon’s brightness and colour control XMC1200 CPU board to drive flicker free LED dimming and colour changing, together with a colour LED card and a white LED card.

Read more

Design centers     

Automotive
Infotainment Making HDTV in the car reliable and secure

December 15, 2011 | Texas instruments | 222901974

Unique Ser/Des technology supports encrypted video and audio content with full duplex bi-directional control channel over a single wire interface.

 

You must be logged in to view this page

Login here :