Print  |  Send  |   

New research on building bio-inspired 'skins' that adapt to heat/light

September 22, 2010 // Julien Happich

New research on building bio-inspired 'skins' that adapt to heat/light

Engineers, design architects and cell biologists from the University of Pennsylvania will use a National Science Foundation grant to utilize the flexibility and sensitivity of human cells as the models for next-generation building "skins" that will adapt to changes in the environment and increase building energy efficiency.


Page 1 of 3

Based upon the dynamic responses that human cells generate, researchers hope to redesign, then re-engineer interfaces between living and engineered systems with the ultimate goal of implementing some of the key features and functions revealed by cells for sensing and control at the building scale.

Administered by the NSF's Office of Emerging Frontiers in Research and Innovation, the four-year, $2 million grant was awarded to Penn for its proposal "Energy Minimization via Multi-Scalar Architectures: From Cell Contractility to Sensing Materials to Adaptive Building Skins."

The objective of the Penn project is to explore the possibility of translating human cells' ability to respond to and alter their surrounding environments into new building materials. Cells alter their extracellular matrices, and thus their surrounding environment, with minimal energy through a combination of physical forces and chemical transactions. The hope is that insights into how cells accomplish this will lead to bio-mimetic designs and to engineers who can turn these findings into passive materials, sensors and imagers that will be integrated into responsive building skins at the architectural scale.

The novelty of the study lies in the collaboration of researchers and laboratories:

Peter Lloyd Jones' lab in the Department of Pathology and Laboratory Medicine at the Penn School of Medicine will analyze cellular nano- and micro-mechanics.

Jenny Sabin and Andrew Lucia in Penn's School of Design will use architectural and computational algorithms to measure and visualize in real time how cells interact with and modify substrate geometry, thus guiding the design and fabrication of soft substrates with generic 1-D to 3-D geometrical patterns in Shu Yang's Lab in the Department of Materials Science and Engineering in Penn's School of Engineering and Applied Science.

1 | 2 | 3 | Next page

All news

Sensors & Conditioning

Follow us

Fast, Accurate & Relevant for Design Engineers only!

Technical papers     

Linear video channel

READER OFFER

Read more

This month, Arrow Electronics is giving away ten BeMicro Max 10 FPGA evaluation boards together with an integrated USB-Blaster, each package being worth 90 Euros, for EETimes Europe's readers to win.

Designed to get you started with using an FPGA, the BeMicro Max 10 adopts Altera's non-volatile MAX 10 FPGA built on 55-nm flash process.

The MAX 10 FPGAs are claimed to revolutionize...

MORE INFO AND LAST MONTH' WINNERS...

Design centers     

Automotive
Infotainment Making HDTV in the car reliable and secure

December 15, 2011 | Texas instruments | 222901974

Unique Ser/Des technology supports encrypted video and audio content with full duplex bi-directional control channel over a single wire interface.

 

You must be logged in to view this page

Login here :