Print  |  Send  |   

Plessey buys LED technology firm, aims at drastically lower HB LED costs

February 07, 2012 // Christoph Hammerschmidt

Plessey buys LED technology firm, aims at drastically lower HB LED costs

British semiconductor manufacturer Plessey has acquired CamGaN Ltd, a University of Cambridge spin-out formed to commercialise novel technologies for the growth of gallium nitride (GaN) high-brightness LEDs on large-area silicon substrates. The acquisition will enable Plessey to exploit synergies with its 6-inch processing facility in Plymouth to produce HB LEDs based on CamGaN's proprietary 6-inch GaN-on-silicon technology. The Company believes this acquisition positions it among the first commercial players to successfully manufacture HB LEDs on 6-inch silicon substrates.


According to Plessey, the HB LED technology acquired in the deal enables the growth of thin HB LED structures on standard, readily available, silicon substrates. Current technologies use silicon carbide (SiC) or sapphire substrates, which are expensive and difficult to scale-up. Plessey's GaN-on-silicon solution offers cost reductions of the order of 80% compared to LEDs grown on SiC or sapphire by: reducing scrap rates, minimising batch time and enabling the use of automated semiconductor processing equipment. These cost reductions will be achieved while enabling outputs in excess of 150 lumens per watt later this year - a combination that Plessey hopes it will allow to offer the most cost effective solutions in the HB LED industry.

Michael LeGoff, Plessey's Managing Director commented, "Achieving the goals of high efficiency and brightness is key to the rapid deployment of energy saving, solid state lighting. This new British technology provides cost and performance advantages that will constitute a game-changing step forward towards the replacement of incandescent and fluorescent bulbs with HB LED lamps."

The biggest technological challenge to date preventing the commercialisation of HB LEDs grown on large-area silicon substrates has been the large lattice mismatch between GaN and silicon, said Plessey Chief Engineer John Ellis. The company's newly acquired GaN-on-silicon process has overcome this challenge and our expertise combined with the intrinsic cost savings of using automated 6 inch processing equipment. This, Ellis pointed out, will position Plessey's HB LED lighting products at the forefront of the industry.

Plessey also announced its plan to release a range of products for smart lighting concepts that incorporate existing Plessey sensing and control technologies including the award winning EPIC sensor. These smart lighting products will enable intelligent energy management, remote control, controlled dimming and automated response to ambient conditions.

Plessey's first samples of a blue LED are characterised by peak emission at 460nm. The technology extends to other emission wavelengths such as cyan and green. Being able to achieve such high brightness at the blue end of the spectrum enables phosphors to be used to produce white light with a balanced spectrum of light emission that is better for the eye. White output powers of 150 lumens/watt are planned for late Q4 2012.

All news

LEDs

Follow us

Fast, Accurate & Relevant for Design Engineers only!

Technical papers     

Linear video channel

READER OFFER

Read more

This month, Oscium is giving away three of its iMSO-204L dual analogue iOS oscilloscopes, worth USD400 each. Designed with native Lightning compatibility, the iMSO-204L transforms the iPad, iPhone, and iPod touch into an ultra-portable, two-channel oscilloscope.

Since Apple changed its connector, Oscium has been working to bring native compatibility to its customers. The third generation...

MORE INFO AND LAST MONTH' WINNERS...

Design centers     

Automotive
Infotainment Making HDTV in the car reliable and secure

December 15, 2011 | Texas instruments | 222901974

Unique Ser/Des technology supports encrypted video and audio content with full duplex bi-directional control channel over a single wire interface.

 

You must be logged in to view this page

Login here :