Print  |  Send  |   

University of East Anglia to use ultrafast laser to research energy harvesting on molecular scale

February 29, 2012 // Paul Buckley

University of East Anglia to use ultrafast laser to research energy harvesting on molecular scale

Funded by a £466,000 grant from the Engineering and Physical Sciences Research Council, scientists at the University of East Anglia (UEA) plan to use new ultrafast laser equipment, capable of generating intense pulses of light as short as a few femtoseconds from the UV to the infra red, to measure how energy is transferred from molecule to molecule and point the way to molecular structures for exploiting solar radiation.

The new laser will be used for 2D electronic spectroscopy experiments that look at the very fastest reactions.  By studying how energy transfers in natural and artificial systems such as proteins and molecular materials, researchers will in turn be able to help the design of new nanomachines and solar power collectors.   

Steve Meech, Professor of Chemistry at UEA’s said: “With this equipment we will be able to develop experiments which probe in exquisite detail the link between the efficiency of light driven processes in natural and synthetic systems and the underlying molecular architecture.”

2D electronic spectroscopy is in many ways analogous to the much better known 2D Nuclear Magnetic Resonance method. The technique uses ultra fast visible light pulses to reveal coupling between electronic states whereas NMR uses radio frequency pulses to measure couplings between nuclear spins.

Twenty years ago most ultrafast experiments relied upon amplified dye lasers. These difficult to use and unstable devices limited the range of experiments. Starting with the discovery of the Titanium Sapphire laser, a whole new family of experiments became possible.

“It is because of the amazing stability and reliability of these modern devices that we can even consider 2D optical experiments, which may take days to run,” added Meech.

Lesley Thompson, EPSRC’s Director of Research Base, said: “The grant for equipment made by our strategic equipment panel will give UEA the tools they need, but EPSRC has also allocated a further £613,000 for staff and collaborations to drive this research forward.”

Visit the University of East Anglia (UEA) at

Visit the EPSRC at

All news

Power Supplies/Batteries

Follow us

Fast, Accurate & Relevant for Design Engineers only!

Technical papers     

Linear video channel


Read more

This month, FTDI Chip is giving away six MCU development board packages complete with a dedicated compiler (including a full integrated development environment).

Worth Euro 315 each, the packages include a credit card sized Clicker 2 board for the FT90X 32-bit MCU supplied alongside a powerful dedicated compiler from MikroElektronika.


Design centers     

Infotainment Making HDTV in the car reliable and secure

December 15, 2011 | Texas instruments | 222901974

Unique Ser/Des technology supports encrypted video and audio content with full duplex bi-directional control channel over a single wire interface.


You must be logged in to view this page

Login here :