Can metallic nanoparticles lower the cost of solar cells?

July 24, 2015 // By Paul Buckley
Researchers from Rice University claim that they could make it easier for engineers to harness the power of light-capturing nanomaterials to boost the efficiency and reduce the costs of photovoltaic solar cells.

In a study published in Nature Communications, researchers from Rice’s Laboratory for Nanophotonics (LANP) described a new method that solar-panel designers could use to incorporate light-capturing nanomaterials into future designs. By applying an innovative theoretical analysis to observations from a first-of-its-kind experimental setup, LANP graduate student Bob Zheng and postdoctoral research associate Alejandro Manjavacas created a methodology that solar engineers can use to determine the electricity-producing potential for any arrangement of metallic nanoparticles.

LANP researchers study light-capturing nanomaterials, including metallic nanoparticles that convert light into plasmons, waves of electrons that flow like a fluid across the particles’ surface. For example, recent LANP plasmonic research has led to breakthroughs in color-display technology, solar-powered steam production and color sensors that mimic the eye.

“One of the interesting phenomena that occurs when you shine light on a metallic nanoparticle or nanostructure is that you can excite some subset of electrons in the metal to a much higher energy level,” said Zheng, who works with LANP Director and study co-author Naomi Halas. “Scientists call these ‘hot carriers’ or ‘hot electrons.’”

Halas, Rice’s Stanley C. Moore Professor of Electrical and Computer Engineering and professor of chemistry, bioengineering, physics and astronomy, and materials science and nanoengineering, said hot electrons are interesting for solar-energy applications because they can be used to create devices that produce direct current or to drive chemical reactions on otherwise inert metal surfaces.

Today’s most efficient photovoltaic cells use a combination of semiconductors that are made from rare and expensive elements like gallium and indium. Halas said one way to lower manufacturing costs would be to incorporate high-efficiency light-gathering plasmonic nanostructures with low-cost semiconductors like metal oxides. In addition to being less expensive to make, the plasmonic nanostructures have optical properties that can be precisely controlled by modifying their shape.

“We can tune plasmonic structures to capture light across the entire solar spectrum,” explained Halas. “The efficiency of semiconductor-based solar cells can never be extended in this way because of the inherent optical properties of the semiconductors.”

The plasmonic approach has been tried before but with little success.


Rice researchers selectively filtered high-energy hot electrons from their less-energetic counterparts using a Schottky barrier (left) created with a gold nanowire on a titanium dioxide semiconductor. A second setup (right), which did not filter electrons based on energy level, included a thin layer of titanium between the gold and the titanium dioxide. B. Zheng/Rice University.