Electrode discovery points to simpler solar cell production method

May 14, 2015 // By Paul Buckley
Researchers at Rice University have discovered a way of simplifying the manufacture of solar cells by using the top electrode as the catalyst that turns plain silicon into valuable black silicon.

Black silicon is silicon with a highly textured surface of nanoscale spikes or pores that are smaller than the wavelength of light. The texture allows the efficient collection of light from any angle, at any time of day. Barron and his team have been fine-tuning the creation of black silicon for some time, but an advance in the manufacturing technique should push it closer to commercialization, claimed Barron.

Barron said the work led by Rice postdoctoral researcher Yen-Tien Lu has two major attractions. “One, removing steps from the process is always good,” explained Barron. “Two, this is the first time in which metallization is a catalyst for a reaction that occurs several millimeters away.”

The metal layer used as a top electrode is usually applied last in solar cell manufacturing. The new method known as contact-assisted chemical etching applies the set of thin gold lines that serve as the electrode earlier in the process, which also eliminates the need to remove used catalyst particles.

The researchers discovered that etching in a chemical bath takes place a set distance from the lines. That distance, Barron said, appears to be connected to the silicon’s semiconducting properties.

“Yen-Tien was doing the reaction with gold top contacts, adding silver or gold catalyst and getting these beautiful pictures,” explained Barron. “And I said, ‘OK, fine. Now let’s do it without the catalysts.’ Suddenly, we got black silicon - but it was etching only a certain distance away from the contact. And no matter what we did, there was always that distance.

An electron microscope image shows fine, light-absorbing pores and spikes created in minutes on the surface of a silicon wafer for solar cells. Gold electrodes do double duty in the black silicon process developed by scientists at Rice University by serving as a catalyst to etch the surface in minutes. Image courtesy of the Barron Group