Ultra-thin perovskite nanocrystals enable tunable, energy-efficient LEDs

October 27, 2015 // By Paul Buckley
LMU researchers led by Alexander Urban and Carlos Cardenas-Daw at the Chair for Photonics and Optoelectronics of Professor Jochen Feldmann, have synthesized perovskite nanocrystals in the form of ultrathin nanoplatelets whose emission characteristics can be tuned by altering their thickness.

The resulting nanoplatelets are some 300 times thinner than the perovskite films conventionally used in the fabrication of solar cells.

"The platelets are so thin that I could hardly believe my eyes when I first saw them in the electron microscope," said Jasmina Sichert, a PhD student in Feldmann's department and first author of the new study.

By systematically altering the relative concentration of organic cations used in their synthesis, the Munich researchers were able to obtain nanoplatelets that were less than 1 nm thick, corresponding to a layered stack the height of a few atoms.

"I was absolutely astonished that, in spite of their enormous surface area, these platelets emitted such an intense blue luminescence," explained Alexander Urban. In fact, the properties exhibited by these minuscule particles are inexplicable in the context of classical physics. They can be accounted for only by invoking the laws of quantum physics, as confirmed by theoretical calculations carried out by the team.

Moreover, not only could platelets of varying thickness be produced in a controlled manner by modifying the conditions of their synthesis, these changes also resulted in striking alterations in their optical properties: In fact, the light emitted by the perovskite nanoplatelets was found to depend on their thickness. By adding layers to the crystal lattice, the researchers were able to progressively change the color of the emitted photoluminescence from violet to blue and finally to green.